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1 Introduction
There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable.
There is another theory which states that this has already happened.
Numerous times.... [2]

One of the key objectives of ESCAPE-2 is the development and application of a
“domain-specific language (DSL) concept for the weather and climate commu-
nity in order to maximize flexibility, programmability and performance porta-
bility to heterogeneous hardware solutions across different weather and climate
models”. The realization of this objective has been structured into several steps
containing the definition of a DSL concept, the development of an open source
toolchain, and the demonstration of its applicability. These steps have been
described in deliverables D2.1-D2.5 [8, 4, 9, 5, 7]. Deliverable D2.6 at hand here
reports on the usability and performance of applying the DSL toolchain and
depends on the above list of previous deliverables.

The aim, as formulated in task T2.4, is "an in-depth evaluation of the DSL
in terms of usability and performance [...], including a comparison between the
original code and the DSL version and their behaviour on different systems."

Usability also has been discussed based on concrete algorithms of selected
dwarfs in D2.4 [5] which are not repeated here but only summarized. Four main
aspects of usability are considered: programmability, completeness, modularity
and the ability to integrate the DSL solution into the model.

In addition to the evaluation of usability by reviewing previous results and
experiences there are now first performance measurements on GPUs available.
These are presented in comparison with OpenACC and discussed with respect
to their sensitivity and to the applied optimizations.

2 Deployment
The SIR form generated by the front-end in JSON format is system independent
1. It can be generated on one system and used on another. The system depen-
dent toolchain behavior is associated with the availability of a CUDA GPU
which allows additional internal tests and may require different performance
tuning parameters depending on the device. Various run-time tests have been
executed on the following systems:

• Mistral supercomputer at DKRZ

• Tsa supercomputer of MeteoSwiss

• Standard Ubuntu 20.04 desktop and server systems
1There is a filename element in SIR which caries the unessential but system dependent

DSL source code path. Using the -nopath option of CDSL allows to generate bit-identical file
content on different systems.
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GPU performance tests were executed on Tsa (see section 4). Mistral is at it’s
end of lifetime and does not have any modern GPUs, so it was not considered
a promising platform to do additional performance evaluations. CDSL internal
correctness tests were executed on all systems:

For the evaluation of a proper toolchain build the fundamental DSL building
blocks that correspond to the defined DSL concepts have been implemented in
the form of unit tests into the front-end. Furthermore there are extensive built-
in integration tests that capture the whole workflow from DSL source code up
to the execution of the compiled binary with subsequent numerical comparison
of Fortran and DSL solutions. Structured and unstructured grids are tested
on CPU and - if available - on CUDA-GPUs. The unstructured tests use an
original ICON grid provided by MPI-M and therefore allow reconstructing the
stencil connectivity present in the full ICON model.

DSL versions of the NEMO and ICON dwarf have been evaluated on Mistral
using CPU and CUDA back-ends. The DSL implementations pass the correct-
ness criteria. This has been reported in detail in D2.4 [5].

3 Usability
In the following we describe different usability aspects of the DSL toolchain:

• DSL Programmablity describes how the DSL concepts are expressed in
actual DSL source code and how this code is validated at compile time.

• Completeness describes the algorithmic space with respect to the analyzed
dwarves and the initial ideas formulated in the D2.1 [8].

• Modularity describes the structure of the toolchain and its advantages.

• Model Integration describes integrated building and DSL kernel access
from the perspective of a model developer.

3.1 DSL Programmability
The ESCAPE2 front-end CDSL follows the embedded DSL approach using C++
as host language. Therefore each DSL source code constitutes also valid C++
code. The opposite is not true: Not every C++ code is a valid DSL code.
The ESCAPE2 DSL defines certain concepts that must be identifiable within
the C++ source code, otherwise the code is rejected by the toolchain. The
structure of a valid CDSL source code is sketched in listing 1:

1 // CDSL definitions
2 #include "dsl.hpp"
3 using namespace EDSL;
4 namespace edsl {
5 // definition of iteration spaces:
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6 Gridspace cek_space(cells ,edges ,levels);
7 Gridspace ck_space(cells ,levels);
8 Gridspace ek_space(edges ,levels);
9

10 // definition of field types:
11 define_field_type(CEK_Field ,cek_space);
12 define_field_type(CK_Field ,ck_space);
13 define_field_type(EK_Field ,ek_space);
14

15 // definition of global scalars , e.g.:
16 const int g = 42;
17

18 // definition of kernels:
19 void myfun1(CEK_Field stencil , CK_Field alpha , EK_Field beta) {
20 vertical_region(start_level ,end_level) {
21 compute_on(cells) {
22 alpha = nreduce(edges , stencil * beta) * g;
23 }
24 }
25 }
26

27 void myfun2(CEK_Field stencil , CK_Field alpha , EK_Field beta) {
28 alpha = nreduce(edges , stencil * beta) * g;
29 }
30

31 }

Listing 1: CDSL code example

The source code shows the definition of different entities:

• The DSL itself is described in a C++ header file that has to be included
first. The following DSL source code has to be contained within the edsl
namespace in order to be recognized by the toolchain.

• Predefined domain spaces, e.g. cells and levels, can be combined into so
called gridspaces. A gridspace describes the degrees of freedom of field
variables or iteration statements.

• Field type definitions bind a gridspace to a C++ type which then can
be used to declare field variables. On unstructured grids there are dense
fields which have only one unstructured degree of freedom and sparse
fields which have two. Higher order sparse fields with more than two
unstructured dimensions are currently not supported. Structured grids
don’t need sparse fields to describe stencils: they are described via scalar
weights combined with directional field offsets in Cartesian coordinates.

• The toolchain also supports scalars of global scope but not global fields.

• Function definitions have to follow a certain structure that organizes do-
main iterations and local operations.

• Iterations covering the 3d physical space are expressed as two nested con-
cepts: an outer vertical_region and an inner compute_on region. The
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compute_on concept accepts horizontal locations, e.g. cells, edges or ver-
tices for unstructured grids and longitudes, latitudes for structured grids.
The vertical extent can be narrowed with literal offsets to the symbolic
start and end levels. This allows special implementations for surfaces.

There are two main classes of local operations available in functions: elemental
algebraic operations and stencil reductions on field expressions over neighbors.
These can be combined with iterations to formulate an algorithm.

The DSL abstraction is visible here by the lack of iteration indices. The
abstraction can be increased further as shown in myfun2 that is equivalent to
myfun1. The additional compactness is a consequence of the available type
information at compile time which allows the toolchain to infer iterations from
field declarations. The same information is used to check the consistency of a
field statement: the DSL does not allow a binary operation on incompatible
degrees of freedom, e.g., alpha(cells) = beta(edges) gives an error message.

At runtime debugging can be done with standard tools. However these tools
will show the generated C++/CUDA code - not the DSL code. Therefore some
understanding of the target language is required for programming in the current
DSL.

The concepts of the ESCAPE-2 DSL have been described in D2.1 [8]. Details
of the concrete implementation and the dialect of CDSL have been described in
D2.2 [4]. The implicit semantics contained in the DSL concepts and field decla-
rations make the DSL an expressive language beyond general purpose languages
like Fortran or C++.

The parallel execution model 2 defines the order in which algorithmic ele-
ments within a kernel are executed: Vertical iterations over whole horizontal
planes keep their sequential order in a parallel execution while iterations within
each horizontal plane have no guaranteed execution order.

The independent horizontal evaluation semantic is very common in the tar-
geted application domain. However, the fixed nesting of iteration spaces with
an outer vertical iteration does not always match the implementation within
ICON-O, i.e., a vertical loop-bound that is given by a horizontal depth field
cannot be represented in the same way. Instead, an equivalent DSL formula-
tion must use a 3d land-sea mask in a conditional statement applied to every
iteration.

3.2 Completeness
The space of describable algorithms with the ESCAPE-2 DSL is less than that of
a general purpose language. However, this corresponds to the main idea behind
DSLs: to limit and capture the domain complexity using few selected concepts.
The general scope of algorithms targeted by the DSL is the stencil-based weather
and climate domain [8].

The applicability of the current implementation has been demonstrated for
the structured NEMO dwarf and for selected kernels of the unstructured ICON

2https://github.com/MeteoSwiss-APN/dawn/wiki/SIR-Execution-Model
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model used in an ICON-O advection test scenario [5]. The main result is that
the DSL toolchain can be used for a wide range of relevant stencil problems.

Stencils with more than one sparse dimension are not supported yet. Such
a stencil has been examined in D2.4 [5]. The current solution to such a prob-
lem is based on an experimental branch of the toolchain back-end Dawn that
generalizes the reduction concept. On the model side this solution required a
split of the original stencil tensor in order to fit into the current sparse field con-
cept of the DSL. The original pseudo-code DSL formulation for such a higher
order stencil envisaged a sparse field concept with multiple sparse dimension
(see section 4.2.2.1 of D2.1 [8]). However, such a field concept has not been
implemented yet. Instead, the toolchain supports a generalized single sparse
dimension that is more efficient but less general than the original idea. In prin-
ciple it should be possible to extend the current approach to recover generality
in a future toolchain implementation.

On GPUs device data can be shared between toolchain generated CUDA
code and OpenACC, and the execution order of DSL and OpenACC kernels
can be controlled by using the same CUDA stream. This enables a mixed
solution and therefore relaxes concerns about algorithmic completeness of the
DSL.

For structured grids the toolchain seems complete with respect to the nu-
merical aspect of the investigated NEMO dwarf. However, the lack of support
for halo exchanges leads to additional data transfers between host and device
in order to perform MPI communication on the host side. This problem applies
to unstructured grids, too.

The original ambition formulated in D2.1, section 5 targeted safety of paral-
lel implementations which is not realized in parallel models like MPI, OpenMP
and OpenACC [8]. The DSL toolchain has the information needed to auto-
matically decide about required halo updates and to execute these depending
on the applied stencils. Such an automatism would eliminate the possibility of
inconsistent states of decomposed fields. However, it is currently not possible
to delegate this task to the toolchain.

The examined NEMO and ICON kernels have been translated using toolchain
back-end variants that can generate naïve C++ or optimized CUDA code. In
the future, additional variants have to be provided by the toolchain in order to
realize performance portability.

3.3 Modularity
The architecture employed in the design of the toolchain is modular: The use
of the SIR and IIR specification at the interfaces of the different components
effectively decouples them. This allows for efficient extension of the toolchain
by the user.

This is illustrated in figure 1. The (unstructued) toolchain currently sup-
ports two front-ends, namely CDSL and dusk, and has one code generator that
emits code in two host languages (C++ and CUDA). Due to the well specified
interfaces using SIR and IIR, respectively, this can be readily extended by the
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Figure 1: Design of the ESCAPE-2 DSL toolchain.

user. A new front end can be added by transposing user code into their re-
spective SIR equivalents. Conversely, a new code generator can be added by
inspecting the IIR emitted by dawn-opt, end emitting a language primitive in
the desired host language for each IIR node. Since both SIR and IIR can be
serialized to disk, both of these envisioned added components can potentially
be implemented in any programming language of the users chosing.

3.4 Model Integration
3.4.1 Toolchain Build Integration

The build procedure of the full ICON model has been extended to use the
ESCAPE-2 DSL toolchain as a compiler to generate hardware specific kernel
codes from DSL source code. The generated toolchain output is compiled using
model compatible compilers (in the case of mistral.dkrz.de: g++ and gfortran of
gcc71 and cuda-10.0.130 for NVidia GPUs). The ICON model is then compiled
in a second build phase using the generated libraries and Fortran modules of
the first phase. The linking step requires the inclusion of the C++ standard
library libstdc++ and, if GPUs are targeted, the CUDA libraries libcudart.so
and libcudadevrt.a. In addition we use the toolchain library libcdslUnstruct.so
that supports object oriented kernel access and data transfer for unstructured
grids with Fortran.

The main feature of this procedure is that the DSL source code behaves like
model source code insofar that it is an integral part of the established build
scheme that triggers recompilation on modification.

The second aspect is that the hardware selection is completely absorbed by
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the build procedure. Neither the DSL code nor the model has any knowledge
of the hardware target. This separation of concerns is possible because of the
toolchain design and a kernel abstraction layer that provides identical Fortran
interfaces to the model.

3.4.2 DSL Kernel Access

The choice of a C++ embedded approach for the front-end implementation was
founded on technical aspects: The flexibility and compile-time type-safety of
C++ and the available LLVM/clang tooling support that reduces the parsing
task and also catches basic errors in DSL code. The host language however,
does not extend the algorithmic space of the DSL. This is entirely defined by
the HIR [9]. The actual main application target is a model implemented in
modern Fortran. Therefore the toolchain can generate object oriented Fortran
support that simplifies the DSL usage.

The command
1 $ cdsl -s cpp -b CUDAIco -o out.cpp DSL_example1.cpp

generates three files: out.cpp, c_itf_out.cpp, and f_itf_out.f90. For each
DSL function these files provide Fortran types with type-bound procedures
init, run, and finalize which connect to the corresponding kernel meth-
ods. The toolchain provides additional Fortran support that allows to specify,
generate and transfer appropriate device data fields in a hardware independent
way.

The data transform between model and back-end requires the specification of
meta data that describes the size and kind of dimensions used in the allocation
of a model variable, e.g., listing 2

1 CALL e_vol_meta_data%init([nproma , nlev , nblks_edges], &
2 & [cdsl_idx_dim_kind , cdsl_lev_dim_kind , cdsl_blk_dim_kind ])

Listing 2: meta data specification example

describes the ICON data layout of a 3d velocity field on edges. The sequence
of dimensional kind values describes the blocked data layout where horizontal
planes are in general non-contiguous. In a setting optimized for GPUs-only
nproma could be set to an extremely large value such that the layout consists
of a single block only. In that case direct transfers without reshape would be
possible.

In addition to the exchange of simple model data there is a more complex
mesh object that is used in the kernel initialization for unstructured grids. This
mesh has to be generated once within the model using Atlas [6] and existing
direct connectivity maps between edges, vertices and cells. All required func-
tionality is available in Fortran.
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4 Performance
To get a first picture of the performance achieved by the code produced by the
DSL toolchain, the complete diffusion submodule (mo_nh_diffusion.f90) was
translated stencil by stencil, defined here as a $ACC PARALLEL LOOP region.

The procedure outlined in section 3.4.1 allows for “in situ” timings of the
stencils directly in the ICON model. The grid data allocated by ICON is re-
used by the DSL stencils executed, hence, there is no overhead associated with
copying fields to the DSL context.

Timings recorded on the tsa supercomputer of MeteoSwiss using a single
nvidia Tesla V100 GPU are summarized in figure 2. As can be seen, the DSL
version either outperforms or matches the performance of the OpenACC version
for each kernel, except in stencil 13. Save for this stencil, the performance
increase using DSL ranges from 6 percent (stencil 6) to 87 percent (stencil 14),
with an average performance increase of roughly 23 percent.
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Figure 2: Timings of the diffusion submodule, OpenACC vs DSL

4.1 Discussion
While these timings look promising, it has to be noted that quite a few perfor-
mance optimization on the DSL side were not employed. First of all, it would
be readily possible to fuse some of these stencils using the DSL apporach into
one. This was not done in order to enable a one-to-one comparison of singular
DSL stencils to OpenACC parallel regions. Furthermore, only the default set
of optimizations in the dawn compiler were activated. That is, aggressive or
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experimental compiler passes that are not proven on the whole dycore were de-
activated. It also has to be noted that the performance of some DSL kernels is
quite sensitive on the CUDA block size and thread granularity (number of ver-
tical levels processed by a single CUDA thread), which was fine tuned manually
on a per-stencil basis. Of course it would be desirable that these quantities are
determined heuristically in the compiler, but current research suggests that this
is a daunting task. Another ongoing process is to properly understand these
performance differences using more involved profiling than simply comparing
the run times to device further optimization strategies.

5 Conclusion
The ESCAPE-2 DSL toolchain constitutes a DSL concept suitable for the stencil
based weather and climate domain. It separates syntax from functionality by
specifying a High-level Intermediate Representation (HIR) and therefore allows
syntax variations in order to express different preferences. The readable HIR
format also allows writing additional tools, e.g., interface generators to support
a certain programming style in the chosen application language.

The toolchain concept has been implemented in ESCAPE-2 by providing
the C++ embedded front-end prototype CDSL and the optimizing back-end
Dawn. Structured and unstructured grids are supported. The code generation
currently provides debug-friendly C++ and optimized CUDA solutions. First
performance measurements on Nvidia GPUs already show a clear advantage
compared to OpenACC although not all available DSL performance optimiza-
tion strategies have been applied yet.

The generated code can be used directly in C/C++ or Fortran codes, and
the integration of DSL kernels into a full model source code and build system
has been demonstrated for ICON. The DSL can capture a large number of
relevant stencils, however, the coverage is not yet complete. For GPU targets
this problem can be bypassed by using a mixed OpenACC/DSL approach. An
equivalent strategy for CPU targets would combine host-language solutions with
DSL solutions. However, the performance of the CPU related code generation
for unstructured grids has not yet been analyzed.

It seems to be too early to expect full performance portability from the
current toolchain implementation. However, this is an iterative process: Im-
plementation and application are advancing together. For CUDA-GPUs the
optimization aspect of the toolchain seems most advanced, approaching pro-
duction quality.

6 Outlook
The ESCAPE-2 proposal states that the top-level project objectives 3 and 5
(see Table 1 in [3]) are achieved by, i.a.:
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• sustaining community-wide code usability and maintainability beyond the
lifetime of the project (objective 3)

• providing an open-source DSL toolchain software and support beyond the
project lifetime to sustain & accelerate novel algorithm development and
ensuring performance portability to emerging HPC hardware (objective
5)

Sustainability mentioned in these objectives can be linked to the open source
nature and the modularity of the DSL toolchain (see section 3.3) which allow a
continued development by the domain community. Modularity is also realized
on a finer level within the implementation of the main toolchain components.
This encapsulates complexity further and simplifies the continued development.

It may be expected that future projects that are interested in performance
portability will contribute to the toolchain evaluation and development. Cur-
rently the “Centre of Excellence in Simulation of Weather and Climate in Eu-
rope” (ESiWACE) [1] applies and evaluates the DSL toolchain approach of
ESCAPE-2.
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