
 

D2.4: 
Demonstration of 
Domain Specific 
Language 
Toolchain for 
Selected Weather 
and Climate 
Dwarfs  
 

This project has received funding from the European 
Union’s Horizon 2020 research and innovation 
programme under grant agreement No 800987. 
www.hpc-escape2.eu 
 

Dissemination Level: Public 



 

 

Research and Innovation Action 

H2020-FETHPC-2017 
 

Project Coordinator: Dr. Peter Bauer (ECMWF)  

Project Start Date: 01/10/2018 

Project Duration: 36 month 

Published by the ESCAPE-2 Consortium 
 

Version: 1.0 

Contractual Delivery Date: Sep 2020 

Work Package/ Task: WP2 

Document Owner: Reinhard Budich 

Contributors: Jörg Behrens, Carlos Osuna, Julia 
Duras, Italo Epicoco, Peter Korn  
Status: Final 

Energy-efficient Scalable Algorithms 
for Weather and Climate Prediction at 
Exascale 
Authors: Jörg Behrens, Carlos 
Osuna, Julia Duras, Italo Epicoco, 
Reinhard Budich, Peter Korn  
 
Date 30. August 2021 



Contents
1 Executive Summary 4

2 Introduction 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Scope of this Deliverable . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Objective of this Deliverable . . . . . . . . . . . . . . . . 5
2.2.2 Work Performed in this Deliverable . . . . . . . . . . . . . 6
2.2.3 Deviations and Counter Measures . . . . . . . . . . . . . 6

3 Dwarfs Selected 7

3.1 The NEMO Dwarf Dwarf-advection-MUS . . . . . . . . . . . . . 7
3.2 The ICON-O Transport Dwarf . . . . . . . . . . . . . . . . . . . 9

3.2.1 Kernels Chosen to Demonstrate the DSL Toolchain . . . . 10

4 The Toolchain 13

4.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 The Back-end Dawn . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 The Front-end GTCLang . . . . . . . . . . . . . . . . . . . . . . 14
4.4 The Front-end CDSL . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Results 15

5.1 GTClang Applied to the Dwarf-advection-MUS . . . . . . . . . 15
5.2 CDSL Applied to the Dwarf-advection-MUS . . . . . . . . . . . 16

5.2.1 CDSL Kernel Implementation . . . . . . . . . . . . . . . . 16
5.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 CDSL Applied to the ICON-O Transport Dwarf . . . . . . . . . . 18
5.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3 Elemental Expressions . . . . . . . . . . . . . . . . . . . . 19
5.3.4 Second Neighbor Expressions . . . . . . . . . . . . . . . . 20

6 Discussion 21

3



1 Executive Summary
This deliverable describes the programming and implementation of two parts
of Earth System model codes, called dwarfs, in variants of a Domain Specific
Language (DSL), which exercise structured and unstructured grids. These im-
plementations can then be fed into the DSL-toolchain as it has been developed in
ESCAPE-2, resulting in back-end-optimized code. The dwarfs generated fulfill
the following points:

• The dwarfs in the complete toolchain can be executed on both CPUs and
GPUs with CUDA support.

• They are available for download in the project repository 1 2.

• They will be fed into work package 3 for further benchmarking and com-
parison with the originals.

The deliverable was delayed for several reasons, which are described as well as
the countermeasures taken. Next steps will now be the interaction with work
package 3 and to check and describe lessons learned for functionality (deliverable
D2.5) and usability (deliverable D2.6) of the toolchain.

Concluding, it can be stated that the concepts developed in work package
2 have been applied successfully, and that DSL dwarf formulations are now
available in a usable shape.

2 Introduction

2.1 Background

ESCAPE stands for Energy-efficient SCalable Algorithms for weather Prediction

at Exascale. ESCAPE-2 continues what ESCAPE-1 started: develop world-
class, extreme-scale computing capabilities for European operational numeri-
cal weather and climate prediction systems. A comprehensive overview of the
project can be found at the project website http://www.hpc-escape2.eu.

One way to strive for enhanced computational performance is to develop
generic programming approaches that ensure code portability and performance
portability. In this context, Domain Specific Languages (DSLs) play an in-
creasing role. Work package (WP) 2 of ESCAPE-2 Programming Models and

Domain-Specific Languages i.a. has the objective to „Demonstrate code adapta-

tion and code generation via the DSL toolchain for a number of representative

and fundamentally different mathematical algorithms and horizontal discretiza-

tions.“ (Bauer, 2018). The WP covered the requirements for a DSL, including a
first definition of a DSL; it developed a front-end that parses a domain-scientist
readable DSL. The front-end translates DSL code into a High-level Intermediate
Representation (HIR). There now is a DSL toolchain developed in the WP.

1git clone ssh://git@git.ecmwf.int/escape/dwarf-d-advection-muscl.git
2git clone ssh://git@git.ecmwf.int/escape/dwarf-d-icon-ocean.git

4

http://www.hpc-escape2.eu
ssh://git@git.ecmwf.int/escape/dwarf-d-advection-muscl.git
ssh://git@git.ecmwf.int/escape/dwarf-d-icon-ocean.git


With this report, we will cover the demonstration of the DSL with weather and
climate prediction dwarfs, which were selected by the project for this WP.

2.2 Scope of this Deliverable

2.2.1 Objective of this Deliverable

Work package 2 Programming Models and Domain Specific Languages is aiming
to define, develop, and apply a DSL toolchain to enhance code portability and
performance portability.

Task 2.4 of this WP demonstrates the application of the DSL to weather and
climate model dwarfs. It is lead by MPI-M, partners are MSWISS, ECMWF,
CMCC, DKRZ, BSC, and RMI. "This task will demonstrate and verify the

usability of the newly developed DSL toolchain for code generation. The task

will translate a specified set of representative dwarfs delivered by WP1 to the

new high-level DSL and apply the DSL toolchain to generate code for multiple

hardware targets (D2.4, MPI-M). These dwarfs are tested and verified against

their original versions and subsequently supplied to WP3 for re-integration (Task

3.3) and benchmarking" (Bauer, 2018).
This work is based on other deliverables of WP2:

• D2.1 (Osuna et al., 2019a) defined the functionality and structure of the
DSL language elements and examined domain examples in the form of
DSL pseudo-code. Important aspects are the unified approach for dif-
ferent grids, the index-free domain iteration, and the representation of
fundamental grid operators, e.g., reductions. These abstractions are the
fundamental building blocks of the ESCAPE-2 DSL that are used in D2.2
– D2.6.

• D2.2 (Behrens et al., 2019) provides the description and implementation
of the ESCAPE-2 front-end (CDSL). The solution constitutes a concrete
realization of the D2.1 pseudo-code DSL using a C++ embedded approach.
CDSL has been continuously refined and is used to formulate the DSL
representation of dwarf kernels shown in this deliverable.

• D2.3 (Osuna et al., 2019b) provides a specification document for the cen-
tral API structure (HIR) that connects front- and back-end within the
toolchain scheme. An extension of the HIR has been implemented as one
of the transformation stages within CDSL and therefore D2.3 contributes
to the toolchain application presented here.

• D2.5 will deliver the implementation of the ESCAPE-2 toolchain. Al-
though D2.5 is scheduled for a later time, the implementation of the
toolchain is already advanced enough to translate most DSL formulations
considered here. Additionally, for one kernel of ICON-O, we used an exper-
imental development branch of the back-end. This enables us to compile
and execute the DSL dwarfs.

5



2.2.2 Work Performed in this Deliverable

To prove existing concepts of the DSL toolchain, two dwarfs extracted from
highly representative weather and climate prediction models had been chosen
for this deliverable: the so called Dwarf-advection-MUS, which is extracted from
the NEMO ocean model (section 3.1), and the so called ICON Ocean transport

dwarf (section 3.2) , which is part of the ICON ocean model. They have been
chosen since they compute on regular - the NEMO dwarf - and on irregular
grids - the ICON-O dwarf.

These dwarfs differ fundamentally in their stencil complexity and represen-
tation: On one hand, in the regular (NEMO) case, a local operator uses few
translation-invariant stencil weights which are applied to grid fields via direc-
tional offsets. On the other hand, the irregular (ICON) case requires a full-
domain sparse stencil field which is applied to grid fields via connectivity maps.
These connectivity maps define the transition from the sparse dimension (which
carries the stencil weights) to the domain elements of a certain location type
(which carry physical state data). The challenge for the DSL is to provide ab-
stract index-free DSL concepts to the user without losing the expressiveness
required by the scientific domain. The selected unstructured dwarf assesses the
applicability of these concepts.

Both dwarfs are considered to be integrated into the High Performance Cli-
mate and Weather (HPCW) benchmark suit, which is task 3.5 of the project.

For all dwarfs we have used the CDSL front-end and the Dawn back-end
which constitute the current ESCAPE-2 toolchain, see section 4. For the NEMO
dwarf we have two DSL implementations, using CDSL and GTClang.

2.2.3 Deviations and Counter Measures

The application of the DSL toolchain was delayed because of major obstacles:

• For unstructured grids front- and back-end development had to be par-
tially redesigned and re-implemented at the point where the concept of
stencil fields with multiple simple sparse dimensions defined in the DSL
specification (Osuna et al., 2019a) was no longer considered to be efficient
enough. A new maximal compact stencil representation that aggregates
the target locations into a non-redundant set was chosen. The increased
compactness reduces the numerical load at the cost of higher order con-
nectivity maps. The new formulation is somewhat less general, and for at
least one use case the DSL had to provide additional functionality in order
to express the algorithm. The situation is still in an experimental state
and one of the ICON-O kernels presented here gives a tentative evalua-
tion of the approach. For the selected ICON-O dwarf the new DSL stencil
concept required a reformulation of model internal operator weights.

• The ICON ocean dwarf does not fit into the dwarf concept that reduces
complexity by extraction, due to the complexity of the ICON code struc-
ture. The work required to extract the selected functionality from ICON

6



was considered to be beyond the means of this project. Instead, the se-
lective aspect of the ICON-O dwarf was realized by the special run-path
of the advection testbed in the ICON script environment. It was assumed
that this limitation would provide enough focus to reduce the complexity
on par to the original dwarf concept. However, the application of the DSL
toolchain also involves the rather complex ICON grid infrastructure and
the full model build procedure. This model-integration work was origi-
nally assigned to a different project task (task 3.3) but now had to be,
and was, solved in this task.

• The unstructured part of the back-end was developed using atmospheric
test-problems. It turned out that these tests did not cover the scope of
ocean specific problems studied in the ICON-O dwarf. Therefore addi-
tional time has been spent on the analysis and correction of ocean-specific
errors.

• Two of our co-workers were out of business due to health reasons for a few
months in the time 2021/22.

Counter measures:

• In order to limit the delay the extent of the ICON-O dwarf functional-
ity targeted for a re-implementation in CDSL has been reduced. This
reduction has been partially compensated by adding ICON-grid related
synthetic Fortran tests directly into the front-end, where they also serve
as integration tests of front- and back-end. In summary, we still think
that we can make a reasonable assessment of the applicability of the DSL
toolchain.

• The additional work performed on integration aspects for the full ICON
model greatly simplifies the generation of a HPCW benchmark version
with DSL support. Therefore, we do not expect a limitation of project
results by the rearrangement of work among tasks. Counter measures
beyond the scope of this deliverable seem unnecessary.

3 Dwarfs Selected
For the project, some dwarfs have been identified to be subject to the application
of DSLs. They seemed to be representative enough for climate and weather
applications, and the data structures and algorithms used in typical cases.

3.1 The NEMO Dwarf Dwarf-advection-MUS

The Dwarf-advection-MUS implements and solves the tracer advection equation.
It has been extracted from the NEMO4.0 (Madec and NEMO-ST, 2019) which is
a European community model framework used for a wide range of applications,

7



both regional or global, as a forced ocean model or as a model coupled with the
sea-ice and/or the atmosphere.

The numerical techniques used to solve the Primitive Equations in the NEMO
model are based on the traditional, centred second order finite difference approx-
imation. Special attention has been given to the homogeneity of the solution
in the three spatial directions. The arrangement of variables is the same in all
directions. The spatial grid is the generalisation to three dimensions of the well-
known “C” grid in Arakawa’s classification. The discretised mesh is a uniform
mesh with a grid size of unity. Discrete partial derivatives are formulated by
the traditional, centred second order finite difference approximation while the
scale factors are chosen equal to their local analytical value.

Several semi-discrete space forms of the tracer equations are available in
NEMO depending on the vertical coordinates and on the physics used. This
dwarf implements the Monotone Upstream Scheme for Conservative Laws
(MUSCL), where the tracer at velocity points is evaluated assuming a linear
tracer variation between two T -points. The MUSCL scheme for the tracer ad-
vection has been implemented by Lévy et al. (2001) . In this formulation, the
tracer ⌧ at velocity points is evaluated assuming a linear tracer variation between
two T -points. For example, in the i-direction (which represents the longitude):

⌧mus
u =

8
>><

>>:

⌧i = +
1

2
(1�

ui+1/2�t

e1u
)@i⌧̃ , if ui+1/2 � 0

⌧i+1/2 = +
1

2
(1 +

ui+1/2�t

e1u
)@i+1/2⌧̃ , otherwise

(1)

where @i⌧̃ is the slope of the tracer on which a limitation is imposed to ensure
the positive character of the scheme. The time stepping is performed using a
forward scheme, that is the before tracer field is used to evaluate ⌧mus

u .
For an ocean grid point adjacent to land and where the ocean velocity is

directed toward land, two choices are available: an upstream flux or a second
order flux. Note that the latter choice does not ensure the positive character
of the scheme. Only the former, which is the actual flux selected in this dwarf,
can be used on both active and passive tracers. The MUSCL scheme doesn’t
require an explicit diffusion operator; in fact it is diffusive enough so that it
doesn’t require additional diffusion, like other advection schemes.

This dwarf has been selected for DSL because it includes a traditional and
uniform stencil on a regular mesh as highlighted in the following snippet of the
Fortran code Listing 1. More details are available in the ESCAPE-2 repository3.

3https://git.ecmwf.int/projects/ESCAPE/repos/dwarf-d-advection-muscl/browse

8

https://git.ecmwf.int/projects/ESCAPE/repos/dwarf-d-advection-muscl/browse


1 ! computation of tracer slop
2 DO jk = 1, jpk -1; DO jj = 1, jpj -1; DO ji = 1, jpi -1
3 zwx(ji,jj ,jk) = umask(ji ,jj,jk)*(ptb(ji+1,jj ,jk)-ptb(ji,jj,jk))
4 END DO; END DO; END DO
5

6 CALL halo_exch(zwx)
7

8 DO jk = 1, jpk -1; DO jj = 1, jpj; DO ji = 2, jpi
9 zslpx(ji ,jj,jk) = (zwx(ji,jj ,jk) + zwx(ji -1,jj,jk)) * 0.5

10 END DO; END DO; END DO
11

12 !advective fluxes
13 DO jk = 1, jpk -1; DO jj = 1, jpj -1; DO ji = 1, jpi -1
14 zzwx = ptb(ji+1,jj ,jk ,jn) + k * zslpx(ji+1,jj,jk)
15 zzwy = ptb(ji ,jj,jk ,jn) + k * zslpx(ji ,jj,jk)
16 zflx(ji,jj ,jk) = pun(ji,jj ,jk) * ( s * zzwx + (1 - s) * zzwy )
17 END DO; END DO; END DO

Listing 1: stencil for advective fluxes in the MUSCL advection scheme

3.2 The ICON-O Transport Dwarf

The ICON Ocean Model (ICON-O) was developed at MPI-M over the last 10
years, for a reference see Korn (2017). The model is used in many different con-
figurations, coupled and stand-alone, with a certain emphasis on high resolution
and regionally focusing implementations. It contains a sea ice model and has
advanced conservation properties.

The ICON-O model uses triangular cells where the variables are placed fol-
lowing the Arakawa C-type staggering (see Korn (2017) for a more complete
description); variables such as temperature or pressure are located at the centre
of a triangular cell, while the normal component of the velocity vector is po-
sitioned at the midpoint of a triangle edge. This choice of grid geometry and
variable placement implies the existence of a computational mode. A computa-
tional cure to control this computational mode has been introduced. A result
of major importance is that the new computational method for the solution of
the dynamic equations of the ocean controlling this mode is compatible with
the conservation laws (Korn, 2017; Korn and Danilov, 2017) and that it does
not affect the wave propagation properties (Korn and Linardakis, 2018). The
numerical method has also been extended to ocean parametrizations (Korn,
2018), and, more recently to generalized vertical coordinates (Singh and Korn,
in preparation), where the z⇤ coordinates is of primary importance.

The ICON-O model has been chosen to demonstrate the DSL because its
numerics and algorithms were sufficiently representative for the numerical solu-
tions of similar equations in the field, and because it was the only unstructured
ocean model owned by one of the project partners. The dwarf selected repre-
sents a transport equation in three dimensions, so we will call it the ICON-O

transport dwarf below. It uses predefined diffusion coefficients as well as initial

9



temperature and velocity fields of the sea water, and computes the time evolu-
tion of the sea temperature field on a so called aqua-planet, a test configuration
of a planet without any land.

As opposed to the ideas at the beginning of the ESCAPE-2 project, it turned
out to be easier in the case of ICON to use and configure the complete model
framework for the building, compilation and execution for only this transport
part, than ripping the framework apart and provide an environment and bound-
ary data for this isolated case of a transport dwarf. Therefore, the ICON-O
transport dwarf is incorporated within a testbed environment and can be called
separately. This is why it might rather be called a test scenario than a dwarf.
The dwarf itself calls general ICON and ICON Ocean routines. This allows,
on the one hand, a more realistic computing example. But, on the other hand,
the DSL implementation has to deal with the whole complexity of ICON and
its infrastructure. This approach still seems to be preferable compared to the
elaborate work required for ICON code extraction.

Its repository can be found at the ESCAPE-2 Software Collaboration Plat-
form4.

3.2.1 Kernels Chosen to Demonstrate the DSL Toolchain

In the following the term kernel is used to describe a functional unit that solves
a given problem in the model - usually a Fortran subroutine. The focus here is
on the algorithmic aspect. Currently two advection subproblems are targeted:

• velocity prediction

The subroutine compute_time_weighted_normal_velocity calcu-
lates the predicted normal velocity vector vdiagn from prognostic values
vprogn at different time levels using the Adams-Bashforth semi-implicit time
stepping parameter �.

vdiagn = � · vprog[tnew]
n + (1� �) · vprog[told]n (2)

This mixing of 3D fields using scalar weight factors is done for each edge
of the computational domain. The operation performs basic elemental
operations without involving the grid specific connectivity. The simplicity
should carry over to the DSL formulation and also allows to inspect the
correctness of the basic toolchain functionality.
The implementation within the ICON ocean code can be seen in the code
snippet Listing 2. Since ICON uses a blocked data layout, e.g., (nproma,
nlev, nblocks) for 3d state fields, the loop structure shows the typical
blocked horizontal (loop over blockNo and je) and depth limited vertical
iteration (loop over jk) of ICON-O.

4https://git.ecmwf.int/projects/ESCAPE/repos/dwarf-d-icon-ocean/browse

10

https://git.ecmwf.int/projects/ESCAPE/repos/dwarf-d-icon-ocean/browse


1 ! horizontal iteration
2 DO blockNo = subset_range%start_block , subset_range%end_block
3 CALL get_index_range(subset_range ,blockNo ,start_edge_index ,

end_edge_index)
4 DO je = start_edge_index , end_edge_index
5 ! vertical iteration
6 DO jk = 1, dolic_e(je,blockNo)
7 vn_time_weighted(je,jk ,blockNo) = ab_gam*vn_new(je ,jk ,

blockNo) + (1.0 _wp - ab_gam)*vn_old(je,jk ,blockNo)
8 END DO
9 END DO

10 END DO

Listing 2: velocity prediction kernel

• mapping edges to edges via cells

In a second step the subroutine map_edges2edges_viacell5 (see List-
ing 3) with non-trivial horizontal dependencies has been evaluated. The
kernel constitutes one of the central algorithmic elements of ICON-O. It
calculates the volume fluxes and implements the filter of divergence noise
(see operator PTP of Korn (2017) for details). An additional scalar tracer
field scalar makes it applicable for tracer transport. Since the fluxes
vn_e are located at midpoints of triangle edges, the operator region en-
closes two nearest neighbor shells around the stencil center: edge ! cells
! edges, resulting in 2 x 3 operator coefficients edge2edge_viacell_
coeff on edges for triangular grids (see Figure 1). These coefficients are
combined with normal velocities vn_e and geometric weights thick_edge
on edges and the scalar tracer field scalar on cells in a twofold reduction
operation that produces the output velocity field on the central edge. The
reduction is hierarchical: a reduction on each of the two adjacent triangles
(line 8-23 and line 24-39) is followed by a summation of the triangle results
(line 41).
This evaluation order defines the relation between scalar tracer field and
operator coefficients and prevents the constant aggregation of the two
operator coefficients that belong to the central edge. In other words, the
usage of the scalar tracer field creates a data dependency between the
edge locations and the iteration path that led to these locations. A simple
aggregation scheme that tries to remove the redundancy of edge locations
without regard for the path information would be generally invalid. In
the model the path information is represented by two sparse operator
dimensions stacked in a flat one-dimensional sparse data layout iterated
by ictr.

5The full subroutine name is map_edges2edges_viacell_3d_mlev_constZs.

11



Figure 1: Two neighbouring triangular cells C1 and C2 within the ICON-O grid.
In red, the central edge is indicated, where the volume flux out_vn_e to be
computed is located.

1 DO blockNo = start_block , end_block
2 CALL get_index_range(edges_inDomain ,blockNo ,start_edge_index

,end_edge_index)
3 ! vertical iteration
4 level_loop: DO level = startLevel , endLevel
5 ! loop over edges
6 edge_idx_loop: DO je = start_edge_index , end_edge_index
7 IF (patch_3d%lsm_e(je ,level ,blockNo) == sea) THEN
8 ! neighbour cell C1 of the current edge
9 ictr = 0

10 il_c = patch_2d%edges%cell_idx(je,blockNo ,1)
11 ib_c = patch_2d%edges%cell_blk(je,blockNo ,1)
12 scalar_cell = scalar(il_c ,level ,ib_c)
13 t1 = 0
14 DO ie = 1, no_primal_edges ! loop over edges of C1
15 ictr = ictr+1
16 il_e = patch_2d%cells%edge_idx(il_c ,ib_c ,ie)
17 ib_e = patch_2d%cells%edge_blk(il_c ,ib_c ,ie)
18 thick_edge = prism_thick_e(il_e ,level ,ib_e)
19 t1 = t1 &
20 & + vn_e(il_e ,level ,ib_e) &
21 & * edge2edge_viacell_coeff(je ,level ,blockNo ,ictr) &
22 & * thick_edge * scalar_cell
23 END DO
24 ! neighbour cell C2 of the current edge
25 ictr = no_primal_edges
26 il_c = patch_2d%edges%cell_idx(je,blockNo ,2)
27 ib_c = patch_2d%edges%cell_blk(je,blockNo ,2)
28 scalar_cell = scalar(il_c ,level ,ib_c)
29 t2 = 0
30 DO ie = 1, no_primal_edges ! loop over edges of C2
31 ictr = ictr+1
32 il_e = patch_2d%cells%edge_idx(il_c ,ib_c ,ie)
33 ib_e = patch_2d%cells%edge_blk(il_c ,ib_c ,ie)
34 thick_edge = prism_thick_e(il_e ,level ,ib_e)
35 t2 = t2 &
36 & + vn_e(il_e ,level ,ib_e) &
37 & * edge2edge_viacell_coeff(je,level ,blockNo ,ictr) &
38 & * thick_edge * scalar_cell
39 END DO

12



40 ! combining results from C1 and C2
41 out_vn_e(je,level ,blockNo) = t1 + t2
42 ENDIF
43 END DO edge_idx_loop
44 END DO level_loop
45 END DO

Listing 3: Subroutine map_edges2edges_viacell_3d_mlev_constZs;
Some identifiers have been shortened.

4 The Toolchain

4.1 The Concept

Since the end of the Dennard scaling (Frank et al. (2001)) era, technical progress
has led to the adoption of new computer accelerators and computing architec-
tures, hybridization and diversification of supercomputers.

The DSL toolchain aims at providing a solution to the portability, perfor-
mance portability and maintainability problems of complex weather and climate
models targeting multiple parallel and heterogeneous architectures. It achieves
this by providing a high-level DSL language specific for weather and climate
patterns. A comprehensive set of language elements that covers all the compu-
tational patterns of the weather and climate dwarfs explored in ESCAPE-2 was
specified in the deliverable D2.1 (Osuna et al. (2019a)).

The design of the toolchain is depicted in Figure 2. A central component of
the modular design is the high-level intermediate representation (HIR) which al-
lows to communicate multiple DSL front-ends with the main toolchain compiler
(Dawn). The HIR is a language agnostic representation of all the language con-
cepts defined in ESCAPE-2 (Osuna et al. (2019a)). The large diversity of com-
putational patterns, derived from the use of different grid types or discretization
methods, identified within ESCAPE-2, advised against the limitations posed by
a single DSL front-end. Like that, different DSL front-ends can provide model
or grid specific syntax and, such, rely on the compiler toolchain by generating
and providing HIR information to Dawn.

Python DSL 
Frontend

clang DSL
(C++)

CDSL High-level 
IR

Read 
before write

Data dependency 
race conditions

Missing Update
Boundary

D
om

ai
n 

Sp
ec

ifi
c 

Ch
ec

ke
rs

Out of Bounds
Stencil Acces

Software Managed
Caches

 

Full vertical
parallelization

O
pt

im
iz

er
s

Data Locality
Exploit

Stage
Fusion

Naive C/Fortran
Generator

Optimized
GridTools Generator

Co
de

 G
en

er
at

or

Strong / Weak
Scaling Optimizer

DSL Frontends

Figure 2: Design of the ESCAPE-2 DSL toolchain.

13



4.2 The Back-end Dawn

Dawn is the compiler toolchain that takes a HIR representation associated to
the user equations and generates efficient code for any compiler architecture.
Structured and unstructured grids are supported. Dawn adopts a modular de-
sign similar to modern compilers like LLVM. As shown in Figure 2, Dawn in-
corporates a set of compiler passes that gradually transforms the intermediate
representation, applying step by step transformations, reorganizing statements
or applying specific optimization techniques. Since the HIR is mainly a se-
quential specification for domain specific computations of weather and climate
applications, a first set of passes (parallel IR builders) of Dawn transforms the
HIR into a parallel IR that adheres to a parallel model of execution. In this
transformation, it ensures the execution of the user equations will be safe and
valid in parallel environment. Example of this type of passes are field version-
ing, required whenever a field is read and written to within the same parallel
stage and stage splitting, that determines based on data dependencies whether
statements need to be split into different stages that require synchronization of
parallel computing elements. After the parallel IR builders, a set of optimiza-
tion passes are ran, which aim at further applying optimization techniques that
will improve the efficiency of the generated code. Examples of the optimization
passes are: stage reordering, which reorders stages in order to group those con-
nected with data dependencies in order increase data locality, Stencil inlining
that perform a lazy evaluation of any temporary stencil values at the grid point
whenever accessed by other stencil computations.

The final step of the toolchain is the code generators which generate efficient
code that can be compiled by a general purpose compiler (C++ compilers or
CUDA nvcc compiler). Further details can be found at Osuna et al. (2020).

4.3 The Front-end GTCLang

GTClang is an existing front-end for Dawn that provides a high-level descriptive
language for expressing finite difference/volume methods on structured grids.
It does not support unstructured grids. Its applicability for structured weather
and climate codes was demonstrated for the dynamical core of COSMO (Osuna
et al. (2020)). The implementation approach is a C++ embedded DSL that
uses Clang to generate the AST (abstract syntax tree). It ties DSL semantic
to predefined identifiers, e.g., i, j and k which carry a directional meaning in
a Cartesian coordinate system. A more general approach is taken by the 2nd
front-end of this deliverable, the CDSL.

4.4 The Front-end CDSL

The CDSL (Community Domain Specific Language) front-end constitutes the
application entry point for the ESCAPE2 toolchain. It provides the user with
the ability to express a broad range of algorithms of the climate and weather
domain in a simple C++ embedded language.

14



The front-end parses, analyses and transforms the DSL source code into a
form that allows further processing by the toolchain back-end. As a result of
the full toolchain processing the user obtains a new source code in a standard
language (C++ or CUDA), adapted to the chosen hardware. A semantic anal-
ysis allows the front-end to give sensible error messages in case of ill-formed
DSL source code. In addition to DSL source code parsing and high level se-
mantic analysis, the front-end also generates object oriented Fortran interface
code that provides a convenient access to the kernel functionality. This simpli-
fies integration of DSL formulated sub-problems into domain models which are
usually written in Fortran.

The front-end implementation uses the Python bindings to libclang to parse
the C++ host language. Subsequent processing of the AST is done in Python.
Additional runtime support for Fortran is written in C++ and Fortran.

The programmability of CDSL benefits from the strong typing support of
the C++ host language which allows to hide implicit semantics into types.
Although the user is restricted by the DSL concepts for good reasons, there
exists the possibility to "escape the DSL" by adding non-DSL C++ code in
a special namespace. However, this only generalizes the elemental grid point
computation - not the domain iteration.

CDSL implements the specification given in “D2.1: High-level Domain Spe-
cific Language (DSL) specification” (Osuna et al., 2019a). Parser and language
dialect have been described in “D2.2 DSL front-end to parse DSL into high-
level intermediate representation (HIR)” (Behrens et al., 2019). The interface
between front-end and back-end has been defined in the document “D2.3: High-
level Intermediate Representation (HIR) Specification” (Osuna et al., 2019b).
In practice, however, there currently exist two variants of the high level interme-
diate representation concept. One variant closely follows the specification doc-
ument D2.3 using a regular expression style to describe the content of language
elements. Another one, also called SIR ("Stencil Intermediate Representation"),
uses a more structured form. Both representations share the same abstraction
level and can function as central toolchain representation. The CDSL front-end
can produce both variants by deriving the SIR form from the HIR form, using
suitable utilities provided by Dawn.

5 Results

5.1 GTClang Applied to the Dwarf-advection-MUS

The Dwarf-advection-MUS has been implemented with the GTClang front-end
using the optimization toolchain based on Dawn. GTClang nativly supports
finite difference stencils which perfectly matches with the requirements of the
Dwarf-advection-MUS. After having mastered the use of the internal "concepts"
of GTClang, the implementation of the dwarf was a trivial translation of the ad-
vection algorithm into GTClang language (as illustrated in the following snippet
of code Listing 4). Nevertheless, the halo exchange using MPI is not supported

15



by GTClang and this required a work-around to have a complete implementa-
tion of the dwarf. We have extended the size of the halo region to two lines
and this allows to move the halo exchange after the advection scheme, hence we
have implemented the advection kernel in GTClang and a Fortran interface of
it has been included in the main program where the halo exchange is executed
after the invocation of the advection kernel.

1 stencil advection_MUS_stencil {
2 Do {
3 //-- computation of tracer slop
4 vertical_region(k_start , k_end - 1) {
5 zwx = umask * (ptb(i + 1) - ptb);
6 zslpx = (zwx + zwx(i - 1)) * 0.5;
7 }
8

9 //-- MUSCL horizontal advective fluxes
10 vertical_region(k_start , k_end - 1) {
11 zzwx = ptb(i+1) + k * zslpx(i+1)
12 zzwy = ptb + k * zslpx
13 zflx = pun * ( s * zzwx + (1 - s) * zzwy )
14 }
15 }
16 }

Listing 4: stencil for advective fluxes in the MUSCL advection scheme with
GTClang

5.2 CDSL Applied to the Dwarf-advection-MUS

The ESCAPE2 DSL toolchain has the ambition to cover a major portion of the
algorithmic space of the weather and climate domain. Therefore, structured
and unstructured grids are supported by CDSL. To explore the applicability of
the structured aspect the NEMO advection dwarf described above has also been
formulated using CDSL.

5.2.1 CDSL Kernel Implementation

In contrast to the formulation using GTCLang the CDSL implementation fol-
lowed closely the original Fortran implementation. This allowed an incremental
development, where the full advection problem was split into several small code
regions tested individually. The listings below show the translation of a typical
loop nest to CDSL.

1 DO jk = 1, jpkm1 !-- Tracer advective trend
2 DO jj = 2, jpjm1
3 DO ji = fs_2 , fs_jpim1 ! vector opt.
4 zbtr = 1. / ( e1t(ji ,jj) * e2t(ji,jj) * fse3t(ji,jj ,jk) )
5 ! horizontal advective trends
6 ztra = - zbtr * ( zwx(ji ,jj,jk) - zwx(ji -1,jj,jk) &
7 & + zwy(ji ,jj,jk) - zwy(ji ,jj -1,jk) )
8 ! add it to the general tracer trends
9 pta(ji,jj ,jk,jn) = pta(ji ,jj ,jk,jn) + ztra

10 END DO

16



11 END DO
12 END DO

Listing 5: selected region of the Fortran NEMO-dwarf implementation

1 void calc_trend_backward(Field2d e1t , Field2d e2t , Field3d fse3t ,
2 Field3d zwx , Field3d zwy , Field3d pta) {
3 Field3d ztra , zbtr;
4 Intrinsic_longitude ji;
5 Intrinsic_latitude jj;
6

7 vertical_region(start_level , end_level - 1) {
8 zbtr = 1.0 / (e1t * e2t * fse3t);
9 // horizontal advective trends

10 ztra = -zbtr * (zwx - zwx(ji - 1) + zwy - zwy(jj - 1));
11 // add it to the general tracer trends
12 pta = pta + ztra;
13 }
14 }

Listing 6: selected region of the CDSL NEMO-dwarf implementation

Not shown in the CDSL code are the user-defined field types Field2d and Field3d

which are part of the DSL code. In contrast to the GTClang version there are
no predefined index variable names (i, j, k) with implicit semantic. Instead,
semantic must be bound to types or variables via explicit declaration, e.g., by
using the type Intrinsic_longitude.

The driver code where the domain and meta data are specified and resource
allocation and kernel execution are controlled was implemented in Fortran using
the object oriented Fortran kernel interfaces generated by CDSL. E.g.:

1 CALL calc_trend_backward%init(core_domain)
2 CALL calc_trend_backward%run(e1t , e2t , fse3t , zwx , zwy , pta(jn))

Listing 7: excerpt of Fortran driver code

This is an example of the general focus of CDSL: Although the DSL code
is embedded in C++, the target application is the Fortran model. The Fortran
support is complete, i.e., no additional non-Fortran driver code had to be written
in the implementation of the CDSL dwarf version.

5.2.2 Verification

The CDSL version of the NEMO dwarf extends the original CMake/ecBuild
configuration to use the ESCAPE2 toolchain with the "naive C++" and CUDA
backend. The code generation is an integral part of the build procedure and has
been tested on the DKRZ HPC system Mistral. The dwarf can be executed in
parallel using MPI but the communication is still done on the host side (CPU)
- not on the device side (e.g., GPU). Therefore data has to be synced back and
forth between device and host in order to do the halo exchange.

17



The original file-based data comparison scheme was changed in favor of a
more debug-friendly solution that executes two different advection implementa-
tions in the same program: a reference version and a DSL version. In addition,
a perturbation scheme has been implemented to increase the significance of the
test. The verification scheme compares the resulting tracer fields using a certain
tolerance. For the C++ backend the results were bit-identical while the CUDA
backend required a relative tolerance of 10�12.

5.3 CDSL Applied to the ICON-O Transport Dwarf

5.3.1 Challenges

The CDSL implementation of the ICON-O transport dwarf faced three major
challenges:

• The benefit of reduced code complexity of the original dwarf concept did
not apply because the extraction of a stand-alone transport kernel was not
considered feasible given the rich dependencies within the ICON model.
Instead, the dwarf was defined as limited code execution path at run-
time. As a consequence the development, build, and execution of the
dwarf was more extensive than, e.g., for the small NEMO dwarf. On the
other hand, this complexity offered the opportunity to study more aspects
of the full model DSL toolchain application at an early time and to iter-
ate between comprehensive application and toolchain development. As a
consequence we have CDSL support integrated into the ICON infrastruc-
ture that greatly simplifies the extension of the current dwarf to other
performance relevant kernels. But we (MPI-M & DKRZ) do not yet cover
as many kernels as we think to be desirable for a more general applica-
bility assessment. Presented here are two ICON-O kernels containing the
following operators:

– An elemental single-point operator that combines velocity fields with
scalar weights.

– A horizontal operator with second-nearest neighbors applied to a 3d
velocity field and a scalar tracer field.

In addition to these model integrated use cases several simple unit tests
have been implemented directly within the front-end repository. These
tests read a global low-resolution ICON grid and exercise simple stencils
on the grid. All unit tests are implemented twice and tested against each
other: Fortran vs. CDSL. This somewhat recovers the low-complexity
dwarf idea but uses synthetic kernels instead of extracted code.

• The initial DSL design was presuming the usage of multiple simple sparse
dimensions that seemed to offer a straightforward transition from model to
DSL implementation. However, concerns about run-time efficiency led to a
new concept using only one sparse dimension with extended capabilities. It

18



is possible that the idea of multiple sparse dimensions will be supported in
the future to recover generality but at the time of writing of this deliverable
this is not yet the case. One of the operators selected for the ICON-
O dwarf was formulated in the model using two sparse dimensions and
therefore had to be rewritten in a form that is representable with the
toolchain.

• ICON uses a blocked data layout, e.g., (nproma, nlev, nblocks) for 3d
state fields. The back-end, however, uses a non-blocked layout which
generally makes direct data transfer between model and toolchain back-
end impossible. A simple solution would be to choose a huge nproma
value that contains all horizontal indices in a single block: (nproma, nlev).
However, this would assume that all performance relevant kernels have
been ported to the toolchain. Otherwise the remaining CPU executed
kernels would run with an inefficient nproma parameter. On the other
hand, a general nproma setting with an indirect data transfer would suffer
from additional transfer costs caused by the data layout transformations.
For the current development situation we chose to implement an indirect
data transfer for all supported field variants that allows us to keep the
standard nproma setting together with its vectorization behavior. For
D2.5 we plan to evaluate the trade-offs stated here.

5.3.2 Verification

The verification of the toolchain generated kernels was done by direct element-
wise comparison with the results of the Fortran reference implementation using
a suitable relative tolerance criterion:

• For the C++-naive back-end generated code a fixed relative tolerance near
the precision limit of the floating point model (✏ = 10�15) was chosen.

• In the CUDA case we had to weaken the precision requirements in order
to ignore the increased numerical noise that is not part of our current
verification: We reduced the relative tolerance to ✏ = 10�12 , and we
introduced an absolute tolerance for small values: � = ✏Rmax, where
Rmax = max{|R|} is the maximum absolute value of the reference field
R. The perceived reduced precision in the CUDA case may be caused by
a combination of different compiler optimizations and a loss of significant
bits for reduction operations with stencil weights of near-equal absolute
value and different signs.

5.3.3 Elemental Expressions

This kernel shows a simple elemental-access-only pattern without spatial de-
pendency. It tests the data transfer (not shown here) of 3d fields between host
and device, the usage of scalars, and applies a typical ocean depth limiter. The
CDSL implementation (see Listing 8) reflects this simplicity. The CDSL code is

19



more compact than the Fortran version because the blocked iteration and the
special data layout does not appear in this formulation.

1 void time_weigthed_vn_kernel(EK_Field vn_weighted , EK_Field vn_old ,
2 EK_Field vn_n , E_Field dolic_e ,
3 K_Field k_id) {
4 vertical_region(start_level ,end_level) {
5 compute_on(edges) {
6 if (k_id <= dolic_e) {
7 vn_weighted = ab_gam*vn_new + (1.0 - ab_gam)*vn_old;
8 }
9 }

10 }
11 }

Listing 8: CDSL stencil for ICON-O velocity prediction kernel

Although the index free (implicit) formulation is more abstract, it can also be
cumbersome as the usage of the vertical field k_id shows. This field is a user
defined identity map for levels and allows to restrict the calculation to the depth
of dolic_e in an implicit formulation. It would be helpful if the DSL itself
could provide this information. Also, the DSL requires the vertical iteration to
be the outermost loop. This may be perceived as unnatural for this iteration
space where the vertical iteration length depends on the horizontal iteration.

5.3.4 Second Neighbor Expressions

The original ICON-O operator edge2edge_viacell_coeff contains two
sparse dimensions with a double visitation of the central edge location and
is therefore not directly representable with the toolchain that only supports one
sparse dimension. To work around this limitation we split the operator into
two sparse parts attached to a central edge: a two-point stencil ec_op on di-
rect neighbor cells and a four-point stencil ece_op on the outer edges of the
diamond pattern (see black lines in Figure 1). The corresponding reduction op-
erations nreduce are shown in Listing 9. The locations of each stencil can be
represented using a single sparse dimension. However, the four sparse edges of
the ece_op stencil need different tracer weights depending on the neighboring
cell (line 19 and 20). For this purpose, we used an indirect assignment DSL
feature that copies domain field values to the elements of a sparse dimension
with corresponding locations. This is done in the loop statement (line 11). The
resulting auxiliary tracer stencil ec_aux is attached to an edge and therefore
can be used in the edge-domain iteration. However, it cannot be used directly
in combination with the ece_op reduction (lines 18-21): ec_aux only has
two weights, while the diamond pattern reduction needs four and each sparse
ec_aux weight must be used twice. This calls for an extended DSL reduction
concept that accepts weights (line 19) as sparse fields with sparse offsets (line
20). A solution has been implemented in the separate development branch off-

setReduction of Dawn 6 that is used here. The final result is the sum of the two
stencil reductions.

6developer repository: https://github.com/mroethlin/dawn.git

20



1 void e2e_via_c_3d_mlev_constZs_kernel(
2 EK_Field vn_e , EK_Field out_vn_e , ECEK_Field ece_op ,
3 ECK_Field ec_op , ECK_Field ec_aux , CK_Field scalar_field ,
4 EK_Field lsm_e , EK_Field thick_edge) {
5

6 vertical_region(start_level ,end_level) {
7 compute_on(edges) {
8 if (lsm_e == -2.0) {
9

10 // aux field:
11 loop_on(cells) { ec_aux = scalar_field; }
12

13 // reduction over neighbor cells:
14 out_vn_e = vn_e * thick_edge * nreduce(cells ,
15 ec_op*scalar_field);
16

17 // reduction over diamond edges:
18 out_vn_e = out_vn_e + nreduce(cells.edges ,
19 {ec_aux , ec_aux , ec_aux , ec_aux},
20 {0, 0, 1, 1},
21 vn_e * ece_op * thick_edge );
22 }
23 }
24 }
25 }

Listing 9: CDSL formulation of the ICON-O mapping edges to edges via cells

kernel. Field type definitions are not shown.

The CDSL code is much more compact than the original Fortran code (List-
ing 3). However, the complexity of the auxiliary field construction requires
some familiarity with the ESCAPE2 DSL concepts and the reduction function-
ality probably contains too many parameter for an intuitive understanding. It
is not clear yet if this offsetReduction concept will be merged into the main
Dawn or if an alternative and more general approach can be implemented. The
solution closest to the original model formulation would require multiple sparse
dimensions.

6 Discussion
The application of the ESCAPE2 DSL toolchain to the selected dwarfs as it is
presented here demonstrates that the toolchain concept and its implementation
generally work for structured and unstructured climate and weather codes. The
toolchain is able to produce correct code for CPU and/or GPU. Both devices
have been successfully used to test the portability of the DSL dwarfs. The back-
end choice has no influence on the DSL formulation or the usage in the model,
only the build process had to be adapted. This demonstrates that separation of

concerns works well in the approach chosen.
But it also became clear that the functionality for unstructured grids cur-

rently supported does not yet cover the target domain sufficiently since, e.g.:

21



• Operators with two sparse dimensions on unstructured grids cannot be
expressed. This is not a fundamental restriction of the concept but rather
of the current state of the implementation.

• For the structured NEMO dwarf there was no workaround required to find
a proper DSL formulation. Here, the toolchain appeared to be mature and
nearly complete. The exception is MPI communication which currently
has to be handled by the model.

For the concrete problem of the ICON-O dwarf we have shown a prototype
solution as a workaround for said limitation. But it is not clear yet if this
approach will enter the toolchain definition finally supported. A proper solution
would also take the usability aspect into account which we have not addressed
in great detail here: The effort required to rewrite the original operator into two
DSL-compliant operators was considerable, i.e., a suitable transform of constant
stencil weights had to be implemented in the model. Another workaround that
should be resolved in the future is the cumbersome implementation of a typical
depth limiter for the ocean level iteration.

Having a high level intermediate representation (HIR) has proven to be a
functional design that allows multiple front-ends to offer different forms of lan-
guage elements. However, the high level of abstraction in the center of the
toolchain also limits the variability of different front-ends. Therefore, the struc-
tural aspect of CDSL is very similar to GTClang. Escaping the DSL is cur-
rently only supported for elemental operations that do not break the abstrac-
tion. What is missing is an abstraction stack with at least two levels instead
of a single HIR in order to express lower level DSL concepts without losing
portability. This should replace the need to escape into a non-portable general
purpose language formulation.

Looking beyond the ICON-O dwarf example we see the greater challenge of
the full model production situation. This not only requires a solution to the
current limitations but also a sustainability concept to protect the investment
into a new programming language. This must also include a development process
to extend the DSL capabilities according to the requirements of the weather and
climate model community, e.g., support for general unstructured grids beyond
the special triangular case. This aspect touches the scope of D2.6 which will
report on the usability of the toolchain.

22



References
Bauer, Peter. Grant Agreement - Number 800897 - ESCAPE-2, 2018. https:
//confluence.ecmwf.int/display/ESCAPEII/Project+Documents.

Behrens, Jörg, Reinhard Budich, Leonidas Linardakis Peter Korn, Ralf
Mueller, Carlos Osuna, Giacomo Serafini and Tobias Wicky. D2.2 DSL front-
end to parse DSL into high-level intermediate representation (HIR), 2019.
https://confluence.ecmwf.int/display/ESCAPEII/Deliverables.

Frank, David J, Robert H Dennard, Edward Nowak, Paul M Solomon, Yuan
Taur and Hon-Sum Philip Wong, 2001. Device scaling limits of si mosfets
and their application dependencies. Proceedings of the IEEE, 89(3):259–288.

Korn, P. and S. Danilov, 2017. Elementary dispersion analy-
sis of some mimetic discretizations on triangular c-grids. Jour-

nal of Computational Physics, 330:156–172. ISSN 0021-9991.
doi:https://doi.org/10.1016/j.jcp.2016.10.059.

Korn, Peter, 2017. Formulation of an unstructured grid model for global ocean
dynamics. Journal of Computational Physics, 339:525–552. ISSN 0021-9991.
doi:https://doi.org/10.1016/j.jcp.2017.03.009.

Korn, Peter, 2018. A structure-preserving discretization of ocean parametriza-
tions on unstructured grids. Ocean Modelling, 132:73–90. ISSN 1463-5003.
doi:https://doi.org/10.1016/j.ocemod.2018.10.002.

Korn, Peter and Leonidas Linardakis, 2018. A conservative dis-
cretization of the shallow-water equations on triangular grids.
Journal of Computational Physics, 375:871–900. ISSN 0021-9991.
doi:https://doi.org/10.1016/j.jcp.2018.09.002.

Lévy, Marina, Audrey Estublier and Gurvan Madec, 2001. Choice of an ad-
vection scheme for biogeochemical models. Geophysical Research Letters, 28
(19):3725–3728. doi:10.1029/2001GL012947.

Madec, Gurvan and NEMO System Team NEMO-ST. NEMO ocean engine,
2019.

Osuna, C., J. Behrens, R. Budich, W. Deconinck, J. Duras, I. Epic-
oco, O. Fuhrer, C. Kühnlein, L. Linardakis, T. Wicky and N.
Wedi. D2.1: High-level domain specific language (dsl) specifica-
tion, 2019a. https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5c2e37f98&appId=PPGMS.

Osuna, Carlos, Jörg Behrens, Reinhard Budich and Tobias Wicky. D2.3
High-level intermediate (HIR) representation specification, 2019b. https:
//confluence.ecmwf.int/display/ESCAPEII/Deliverables.

23

https://confluence.ecmwf.int/display/ESCAPEII/Project+Documents
https://confluence.ecmwf.int/display/ESCAPEII/Project+Documents
https://confluence.ecmwf.int/display/ESCAPEII/Deliverables
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.10.059
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2017.03.009
http://dx.doi.org/https://doi.org/10.1016/j.ocemod.2018.10.002
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.09.002
http://dx.doi.org/10.1029/2001GL012947
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c2e37f98&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c2e37f98&appId=PPGMS
https://confluence.ecmwf.int/display/ESCAPEII/Deliverables
https://confluence.ecmwf.int/display/ESCAPEII/Deliverables


Osuna, Carlos, Tobias Wicky, Fabian Thuering, Torsten Hoefler and Oliver
Fuhrer, 2020. Dawn: a high-level domain-specific language compiler toolchain
for weather and climate applications. Supercomputing Frontiers and In-

novations, 7(2). ISSN 2313-8734. https://www.superfri.org/superfri/
article/view/314.

Singh, Vikram and Peter Korn. A structure-preserving ocean model in gener-
alized vertical coordinates, in preparation.

24

https://www.superfri.org/superfri/article/view/314
https://www.superfri.org/superfri/article/view/314


 

D2.4: 
Demonstration of 
Domain Specific 
Language 
Toolchain for 
Selected Weather 
and Climate 
Dwarfs  
 

This project has received funding from the European 
Union’s Horizon 2020 research and innovation 
programme under grant agreement No 800987. 
www.hpc-escape2.eu 
 

Dissemination Level: Public 



 

 

Research and Innovation Action 

H2020-FETHPC-2017 
 

Project Coordinator: Dr. Peter Bauer (ECMWF)  

Project Start Date: 01/10/2018 

Project Duration: 36 month 

Published by the ESCAPE-2 Consortium 
 

Version:  

Contractual Delivery Date:  

Work Package/ Task:  

Document Owner:  

Contributors:  

Status:  

Energy-efficient Scalable Algorithms 
for Weather and Climate Prediction at 
Exascale 
Authors: Jörg Behrens, 
Carlos Osuna, Italo Epicoco, 
Reinhard Budich, Julia Duras  
 
Date 31. May 2021 



 

 

Table of Contents 
 

1	 Executive Summary ..................................................................................................... 1	

2	 Introduction .................................................................................................................. 1	

2.1	 BACKGROUND ....................................................................................................... 1	
2.2	 SCOPE OF THIS DELIVERABLE ........................................................................... 1	

2.2.1	 Objectives of this deliverable ............................................................................. 1	
2.2.2	 Work performed in this deliverable  ................................................................... 1	
2.2.3	 Deviations and counter measures ..................................................................... 1	

3	 Heading 1 .................................................................... Fehler! Textmarke nicht definiert.	

3.1	 SUB HEADING 2 ................................ FEHLER! TEXTMARKE NICHT DEFINIERT.	
3.1.1	 Sub Heading 3 ............................................. Fehler! Textmarke nicht definiert.	

4	 Heading 1 ...................................................................................................................... 2	

4.1	 TABLE EXAMPLE ................................................................................................... 2	
5	 Conclusion .................................................................................................................... 2	

6	 References .................................................................................................................... 2	

 

 

 

Figures 
Figure 1: Example Figure 2	
 

 
 
 
Tables 
Table 1: Table Caption 2	
 
 



ESCAPE-2 2018 

 

REPORT NAME  1 

1 Executive Summary 

2 Introduction 

2.1 Background 

2.2 Scope of this deliverable 
2.2.1 Objectives of this deliverable 
2.2.2 Work performed in this deliverable  
2.2.3 Deviations and counter measures 

3 Dwarfs Selected 

3.1 The NEMO dwarf Dwarf-advection-MUS 

3.2 The ICON-O Transport Dwarf 

3.3  Kernels chosen to demonstrate the DSL Toolchain 

4 The Toolchain 

4.1  The Concept 

4.2  The back-end Dawn 

4.3  The front-end CDSL 

4.4  The front-end GTCLang 

5 Results 

5.1  GTClang applied to the Dwarf-advection-MUS 

5.2  CDSL applied to the Dwarf-advection-MUS 
5.2.1   CDSL kernel implementation 
5.2.2   Verification 

5.3  CDSL applied to the ICON-O transport dwarf 
5.3.1   Velocity Re-scaling 

5.4   Mapping Edges to Edges via Cells for a 3D Field 

6 Discussion 

7 Conclusions  

 

Body Text (Normal) 
Caption 1 

Note: 

 



ESCAPE-2 2018 

 

REPORT NAME  2 

  

   

 

Figure 1: Example Figure 

1. References 

 

8 Heading 1 

8.1 Table example 

Title 
 

Date Time Copy 

Copy 

 

Copy 

 

Copy 

 

Copy 

 

Copy 

 

Copy 

 

Copy 

 

Copy 

 

Table 1: Table Caption 

 

9 Conclusion 

10 References 

  



ESCAPE-2 2018 

 

REPORT NAME  1 

Document History 
Version 

 

Author(s) Date Changes 

1 Jörg Behrens, Carlos Osuna, 
Julia Duras, Italo Epicoco, 
Reinhard Budich, Peter Korn 

2021-06-28  

    

    

    

 
Internal Review History 

Internal Reviewers Date Comments 

Sergey Kosukhin, MPI-M 2021-07-05  

   

   

   

 
Effort Contributions per Partner 

Partner Efforts 

MSuisse 2 

DKRZ 1 

CMCC 0.8 

MPI-M 6 

Total 9.8 



 

   

ECMWF Shinfield Park Reading RG2 9AX UK 
Contact: peter.bauer@ecmwf.int 

 The statements in this report only express the views of the authors and the European Commission 
is not responsible for any use that may be made of the information it contains. 

 


	Executive Summary
	Introduction
	Background
	Scope of this Deliverable
	Objective of this Deliverable
	Work Performed in this Deliverable
	Deviations and Counter Measures


	Dwarfs Selected
	The NEMO Dwarf Dwarf-advection-MUS
	The ICON-O Transport Dwarf
	Kernels Chosen to Demonstrate the DSL Toolchain


	The Toolchain
	The Concept
	The Back-end Dawn
	The Front-end GTCLang
	The Front-end CDSL

	Results
	GTClang Applied to the Dwarf-advection-MUS 
	CDSL Applied to the Dwarf-advection-MUS 
	CDSL Kernel Implementation
	Verification

	CDSL Applied to the ICON-O Transport Dwarf
	Challenges
	Verification
	Elemental Expressions
	Second Neighbor Expressions


	Discussion

